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1 ADIABATIC INVARIANTS

The presence of adiabatic invariants is actually a common phenomenon, which has
been studied extensively in classical mechanics. Here we follow Landau & Lifschitz
and consider a one-dimensional finite motion, where A is a parameter describing a
very slow change of the system. Here, slow means slow compared to the period T of
the cyclic motion, i.e. TA < X. Now, because )\ is slowly changing, so is the energy
E of the system, where E ~ . This implies that the change of energy is a function
of A, from what follows that there is a combination of E and A, a so-called adiabatic
invariant, which remains constant.

Now let H(p,q;\) be the Hamiltonian of such a system, where again A is the
parameter characterizing the slow change. Then,
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Now we average over one cycle 7 and assume that A does not change on this time
scale
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and using that § = p H we obtain
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By further noting that
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and thus
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We have assumed that A is constant along the integration path, which implies that
E = H(p,q;\) is constant as well. Differentiating H with respect to A gives
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After substituting this expression into our expression for the change of the mean
energy we get
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This result implies that the adiabatic invariant
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remains constant even when the parameter A is changing slowly. [ is actually the area
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enclosed by periodic path of the system in the phase space.

1.1 Example: Harmonic Oscillator

As an example lets us consider a harmonic oscillator, which has the Hamiltonian
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The system’s path describes an ellipse with the semi-major axises v/2mE and \/ 2E /mw?,
and the area
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This implies that the oscillator has an adiabatic invariant

E
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which is conserved even when the oscillator’s mass or k varies.
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